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Why do we need to normalize
scRNAseq data?
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Biological and technical variation

* Biological variation:
— Cell type/state
— Cell cycle
— Cell size
— Sex, Age, ...
— Etc..

* Technical variation
— Cell quality
— Library prep efficiency
— Batch effects
— Etc...
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Biological and technical variation

* Biological variation:
— Cell type/state

— Cell cycle

—\Cell size ¥ " ”

— Sex, Age, . « To identi VFe types
— FEtc we would like to

remove all other

 Technical variation o
sources of variation.

— C#ll quality

—/Library prep efficiency
— Batch effects

— Etc..
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Genes with different distributions
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Normalization

* Want to make expression comparable across
samples, cells and genes.

* Involves 3 main steps:
— Scaling
— Transformation
— Removal of unwanted variation
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Scaling Normalization

* Depth normalization — for uneven sequencing depth

* Gene length normalization — for differences in gene
detection due to gene length (full length methods)

* Drop-out rate normalization — for differences in RNA
content / drop-out rates

OBS! After scaling we have amounts of the
different genes, values.

SciLifeLab
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Depth normalization

* In most cases the amount of RNA — and of
UMIs/reads differ between cells.

— Can be biological, different celltypes have different RNA
amont

— Can be technical, RT-efficiency may differ between
droplets/wells.

* NOTE! Also important to check for outlier genes that
constitute large proportion of the reads!
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Bulk RNAseq methods

* CPM: Controls for sequencing depth when dividing by total count

e RPKM/FPKM: Controls for sequencing depth and gene length. Good for
technical replicates, not good for sample-sample due to compositional
bias. Assumes total RNA output is same in all samples.

e TPM: Similar to RPKM/FPKM. Corrects for sequencing depth and gene
length. Also comparable between samples but no correction for
compositional bias.

FPKM, = ——i = 2. 10°

Xi: observed count

I\
(JT) (m‘) li: length of the transcript
N number of fragments sequenced
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Transformation Normalization

* |dea is to have a distribution of expression and
variance in expression values that best captures
biological variation.
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Logtransformation

* Log-transformed values approaches normal
distribution for bulk RNAseq data

* For scRNAseq — more similar to zero-inflated
binomial

e Still more similar to normal distribution than raw
counts.

Counts Lognorm
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Scaling factors and pseudocounts

Default scale factor is often 10 000, and pseudocount 1.

Relative counts: c¢/sum(c) * scale.factor
Lognorm: log(RC+1)

10K 1K 100K
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Other transforms

e Square root transform - is the variance stabilizing
transformation for Poisson-distributed counts.

e Hyperbolic sine (arcsinh)

& SciLifeLab
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Bulk RNAseq methods

e TMM/RLE/MRN: Improved assumption: The output between samples for
a core set only of genes is similar. Corrects for compositional bias. RLE and
MRN are very similar and correlates well with sequencing
depth. edgeR::calcNormFactors() implements TMM, TMMwzp, RLE &

UQ. DESeq2::estimateSizeFactors implements median ratio method (RLE).
Does not correct for gene length.

* VST/RLOG/VOOM: Variance is stabilised across the range of mean values.
For use in exploratory analyses. vst() and rlog() functions
from DESeq2. voom() function from Limma converts data to normal
distribution.
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Depth normalization and logtransformation
in practice:

Lognorm: divide by sequencing depth * a scale factor
and log-transform the data

Scater normalize — uses total counts or provided size
factors. Default return_log = TRUE. scale factor = 1M.

Seurat NormalizeData — returns log-normalized data
with scale.factor = 10K by default.

Scanpy normalize_total — normalize by sequencing
depth. OBS! scale factor default median of all cells.

— then need to run loglp.
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scRNAseq normalization methods

Deconvolution/Scran (Pooling-Across-Cells)
SCnorm (Expression-Depth Relation)

SCTransform

Census e Dino
Sanity * Normalizr
ZINB-WaVE e DCA

scVi * SAVER
BASICS ° Magic
More.......
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Scran - computeSumpFactors

e Deconvolution with all cells

— The assumption is that most genes are not differentially
expressed (DE) between cells,

e Deconvolution within clusters (FastCluster
beforehand)

— Size factors computed within each cluster and rescaled by
normalization between clusters.

— When many genes are DE between clusters in a
heterogeneous population.

e computeSumFactors — will also remove low
abundance genes

X

5
N
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Normalization with gene groups

* Global scale factors may lead to overcorrection for
weakly and moderately expressed genes and
undercorrection for highly expressed genes.

* |t will also differ a lot between cells with high/low
total counts.

* Solution: Do normalization for genes at different
expression levels — SCNorm & SCTransform
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SCTransform (Seurat)

A C D
- 267 Gene group 1 7.8 Gene group 2 0.2 { Gene group 1 0.2 | Gene group 2
= 1500 1 194 5.4 - .
8 5] 0.11 0.1
5 1000+ 111 c 00- 0.0
s Re)
2 @ -0.11 0.1+
£ 500 3
= = -0.2 -0.2 1
z = 063] 0.758 1 £
0 1 e g : Gene group 3 . Gene group 4 @ 4, |Genegroup3 0.2 Gene group 4
T txrvs 3 0434 0.070 -
oY e} g 0.11 0.1
Total cell UMI S 0241 0.039 1 T o0 Yy
s g o 3 /
B o) S -0.14 -0.11
“C-’ |C 0.2 0.2
5000 T E - |
. ene group ene group = Gene group 5 Gene group 6
0.010{ "¢ 9e-04q ¢ w02 oip oizy Senegetp
< 0.1 0.1
&z 0.005 1 5e-04 1 g &
GC) » 0.0 0.0
o
-0.11 -0.11
.B 0.2 0.2
— o -v. - b o )4 1
g 0 0.001 t———++ 9e-05 L +— —rr A———
[ 1K 2K 3k 1K 2K 3k 1K 2K 3K 1K 2K 3K
2 Total cell UMI count Total cell UMI count
5.
E
04 c
Y 2 UMI counts Log—norm. expression
8§55 ™ 2 3100
g 3 = Cell group
Gene mean g ™|
o 501 | R
B W s
Gene group ID, size .6 H:
| 55 M 4, 5942 § 01— T 5 T T
W2 1711 5, 4694 > 1 2 3 4 5 6 1 2 3 4 5 6
B 3, 1687 6, 4260 X Gene group

N B?S (Hafmeister & Satija Genome Biology 2019) SClLlfeLab

NATIONAL BIOINFORMATICS
NFRASTRUCTURE SWEDEN



A

Scaled Pearson residual

SCTransform (Seurat)
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SCTransform (Seurat)

OBS! SCTransform function in Seurat also does
variable gene selection in the same step with a
slightly different method than the default in Seurat.

But you can also specify which genes to run it on.

You can also run regression of other parameters in
the same step.

Should be run per sample not with all data together.

& SciLifeLab
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Zero-Inflated Negative Binomial-based Wanted
Variation Extraction (ZINB-WaVE) - NewWave.

 Normalization and batch correction in one go
* Both gene-level and sample-level covariates

e Extension of the RUV model

J genes

log
| Known sample-level covariates =~ Known gene-level covariates Unknown sample-level covariates
n samples

M J L J K J
v .
= B + [N + w
J genes n n n

logit 7 Observed Unknown Unknown Observed Unobserved  Unknown
random parameter parameter random random parameter
n samples variable variable variable
X intercept acts as a Vintercept acts as a sample-
gene-specific scaling factor specific scaling factor
QO

Il _;;‘ Risso et al. Nat. Comm. 2018 SciLifeLab



Comparison of transformations for single-cell

Raw counts Delta method GLM residual
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Delta method

GLM residuals
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DE with different normalizations

b Trade-off between power and false discoveries (pAUC)
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Imputation

* scRNAseq has a lot of zeros in expression matrix
e Common for GWAS data to impute SNPs

 Many methods published:
— SAVER
— Drimpute
— sclmpute
— MAGIC
— Knn-smooth
— Deep count autoencoder
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Imputation can introduce false correlations
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Scaling data — Z-score transformation

e Z-score transformation - linearly transform data to a
mean of zero and a standard deviation of 1 - also
called centering and scaling

* PCA or any other type of analysis will be dominated
by highly expressed genes with high variance.

* |t can be wise to center and scale each gene before
performing PCA, some methods only do centering.

/
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What normalization should you use?

Normalization has big impact on differential gene
expression, but not as much on clustering

In most cases it is enough to do sequence depth
normalization and log-transformation.

When working with highly similar subtypes of the
same celltype, or with celltypes of very different
sizes, individual size factors could help.

Binning by gene level (SCTransform) helps to remove
the effect of different gene detection across cells.

SciLifeLab
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Confounding factors

* Any source of variation that you do not expect to
give separation of the cell types.
— Cell cycle
— Cell size
— Sequencing depth
— Cell quality
— Batch
— More...

/
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Linear regression

Fit a line to the gene
expression vs variable
of interest

Calculate residuals

Remove variance
explained by the
variable of interest by
taking the residuals.

Multiple linear
regression if multiple

factors.
\\

5 Y
5
S
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Other tools to remove unwanted variance

RUVseq() or svaseq()

Linear models with e.g. removeBatchEffect() in limma

or scater
ComBat() in sva

Tools like SCTransform, ZIMB-WaVE does regression

in the same step.

/
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What confounders should you remove?

Percent mitochondrial reads — often correlates with
quality of cell

Sequencing depth / nUMI

Gene detection rate — relates to amount of RNA per
cell.

Cell cycle
Batch effects (Sample, dataset, sort date, sex, etc.)

— in most cases it is better to use an integration tool.

/
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What confounders should you remove?

ALWAYS check QC parameters in PCA/tSNE/UMAP and
see how they influence your data.

BUT, be careful that your confounders are not related
to your biological question!

/
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Scaling and regression in practice

e Seurat ScaleData: does Z-score transformation and
regression of variables in vars.to.regress. Can use
linear (default), poisson or negbinom models.

e Scran: runs scaling but not centering automatically in
PCA step. trendVar function estimates unwanted
variation either with a design matrix or with block
factors. decomposeVar or denoisePCA to remove
unwanted variation.

e Scanpy: pp.regress_out and pp.scale functions.

\'\
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Predict cell cycle stage / scores

* Seurat — CellCycleScoring — builds on G2M- &
S-phase human gene lists from Tirosh et al. paper

e Scran — cyclone function — trained on mouse cell
cycle sorted cells. Uses relative expression of pairs of
genes.

* Scanpy - tl.score_genes_cell cycle — uses same gene
list as Seurat

& SciLifeLab
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OBS! Seurat/Scanpy ”"Phase” predictions use a fixed

cutoff.
0.44
0.75-
)
2 Rl |dentity
) - G1
= . G2M
(Q\] e S
O 0.251
0.00 - e
0.0 0.2 0.4 0.6 0.8
S.Score

FeatureScatter(data, "S.Score","G2M.Score", group.by =

NB?S o SciLifeLab

TIONA I: NFORMATICS
FP STRUCTURE SWEDEN



Cell cycle removal

Regression on cell cycle scores.
— Either with S.Score and G2M.Score
— Or with Diff = S.Score — G2M.Score

scLVM - Designed for cell-cycle variation correction.
Also has correction of other confounding variables.

ccRemover (stable version from CRAN). “ccRemover
outperforms scLVM slightly.”

Oscope
reCAT

/

& SciLifeLab



Selecting genes

Excluding invariable genes that do not contribute
informative/interesting information

— Improved signal to noise ratio

— Reduced computational requirements

Highly variable genes (HVGs)
Correlated gene pairs/groups
Top PCA loadings

/
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Variable gene selection

Genes which behave differently from a null model
describing technical noise

— Mean-variance trend: genes with higher than expected
variance

— Coefficient of variation (Brennecke et al. 2013)
High dropout genes

— Number of zeros unexpectedly high compared to null
model

/
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Highly variable genes (HVGs)

CV - var -

o
mean U

Fit a gamma
generalized linear
model

0.01 - No ERCCs?
. , , , ; : , -> estimate technical
01 1 10 100 10%® 10* 10° noise based on

Average normalized read count all genes

N B;S (Brennecke et al. Nature Methods 2013) SClLlfQLab
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Varaiable gene selection in practise:

e Seurat: FindVariableFeatures - default vst method

Fits a line to the relationship of log(variance) and log(mean) using local
polynomial regression (loess). Then standardizes the feature values
using the observed mean and expected variance. Feature variance is
then calculated on the standardized values after clipping to a
maximum.
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Varaiable gene selection in practise:

NOTE! If you run SCTransform on a Seurat object it will
automatically run HVG selection with its own method
(based on Pearson residuals)

vst uses the raw counts to define the variance.

3 SciLifeLab
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Varaiable gene selection in practise:

Scran: ModelGeneVar & getTopHVGs

Model the variance of the log-expression profiles for each gene,
decomposing it into technical and biological components based on a
fitted mean-variance trend.

Caninclude blocking parameters in the design.
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Varaiable gene selection in practise:

Scanpy: sc.pp.highly variable genes

Implements same methods as Seurat

Can specify “batch_key” and calculate per batch then combine the
values.
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Evaluation of HVGs for clustering

B sctransform

ARI at true # clusters ARI at true # clusters
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Evaluation of HVGs for integration
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How many genes should you choose?

Too few variable genes:
- Do not capture all biological signal.
Too many variable genes:

- Risk of also including technical noise.
- Higher computational cost.

No number fits all datasets!

- Single celltype - use few HVGs (1000-2000)
- Many celltypes - use more HVGs (3000-5000)

& (Zappia et al. Nature Methods 2025) SciLifeLab



How many genes should you choose?
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Conclusions

Normalization has impact on differential gene
expression.

Many different methods to remove unwanted
variance — often an important step!

Selection of variable genes is important to remove
noise in the data. Always subset genes before
running PCA/clustering.

Always aim for same sequencing depth in all samples
— to avoid at least one confounding factor.
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Do not worry!

If you have distinct celltypes — the clustering will be
similar regardless of how you treat the data.

But, for subclustering of similar celltypes normalization
and removal of confounders may be crucial.
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