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Cell identity

Morris, Development 2019 2



Celltype ontologies

We need a standardized way of classifying celltypes. 
Mainly driven by cell atlas projects. 

Including HuBMAP, Human Cell Atlas (HCA), cellxgene, Single Cell Expression Atlas, 
BRAIN Initiative Cell Census Network (BICCN), ArrayExpress, The Cell Image Library, 
ENCODE, and FANTOM5,

Osumi-Sutherland, Nature Cell Biol 2021 3
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How can we identify cell populations?
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Unsupervised celltype identification is problematic

Time 
consuming

Not 
reproducible

Subjective
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Can we automatically identify cell 
populations?
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Can we automatically identify cell 
populations?
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Clustering
• Unsupervised learning
• Discovering 

structure/relations
• Clusters are defined by 

a decision boundary

Classification
• Supervised learning
• Prior information 

available about 
different groups

• Classifiers find 
descriptions of decision 
boundaries

Can we automatically identify cell 
populations?
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Classifier training

• Dataset: for j th cell:
• gene expressions xj

• class label: yj ∈ {1=T,-1=B}

• Classifier:

• Errors:

• Place decision boundary  (i.e. 
change W) s.t. E is minimal

xj2

xj1
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Instance Based Learning (Lazy Classification)

• Example: Nearest neighbor (k-NN)

• Keep the whole training dataset

• A query example (vector)  comes

• Find closest example(s) 

• Predict 

• No actual training

xj2

xj1
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Nearest Neighbor (k-NN)

• To make Nearest Neighbor 
work we need 4 things:

1) Distance metric:

2) How many neighbors to 
look at?

3) Weighting function 
(optional)

4) How to fit with the local 
points? xj1

xj2
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Nearest Neighbor (k-NN)

• Distance metric:
– Euclidean

• How many neighbors to look at?
– k

• Weighting function (optional):
– Unused

• How to fit with the local points?
– Predict the average output among k

nearest neighbors

xj1

xj2
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Effect of k
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Weighted Nearest Neighbor 
(kernel regression)

d(xi, q) 

= 0

w
i

• Distance metric:
– Euclidean

• How many neighbors to look at?
– All of them!

• Weighting function:

– Nearby points to a query q are 
weighted more strongly. KW: kernel 
width 

• How to fit with the local points?
– Predict the weighted average 
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Comparison: K=1, K=2, kernel
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Support Vector Machine (SVM)
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xj2

xj1

Boundary 1

Boundary 2

Which boundary 
is better?

Support Vector Machine (SVM)
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xj1

Boundary 1

Boundary 2

Which boundary 
is better?

The one that 
maximizes the 
margins from both 
labels. 

Support Vector Machine (SVM)

xj2
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Can we automatically identify cell 
populations?
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Can we automatically identify cell 
populations?
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Benchmark paper 2019

(Abdelaal et al. Genome Biology 2019) 25
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16 existing classifiers (April 2019)



16 existing + 6 off-the-shelf classifiers
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Experiment 1: intra-dataset evaluation

•

It ranges from 0 to 1, with 1 indicating perfect precision and 
recall
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% Unlabeled

Most classifiers work well
Median F1-score
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Performance drops with deeper annotation

% UnlabeledMedian F1-score
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Trade-off between high performance 
and rejecting cells

% UnlabeledMedian F1-score
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Prior knowledge is not always 
beneficial

% UnlabeledMedian F1-score

Lower 
number of 

classes!
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Off-the-shelf SVM outperforms 
dedicated single cell classifiers

Median F1-score % Unlabeled

33



Experiment 2: inter-dataset evaluation

• Train on one dataset, evaluate on 
another

• More realistic scenario

• More challenging, data is not aligned

34

Dataset 1

Training Test

Dataset 2
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Experiment 2: inter-dataset evaluation

Jiarui Ding et al. Nature Biotechnology 2020 35
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Experiment 3: rejection evaluation
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Performance 
Summary
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Conclusions so far

• Simple, off-the-shelf classifiers outperform dedicated 
single cell methods (see also Köhler et al. bioRxiv 2019)

• Prior-knowledge does not improve performance (highly 
dependent on selected markers)

• Rejection is difficult

• SnakeMake pipeline: 
https://github.com/tabdelaal/scRNAseq_Benchmark/

47Abdelaal*, Michielsen* et al. Genome Biology 2019
47

https://github.com/tabdelaal/scRNAseq_Benchmark/


Benchmark paper 2021

Xie et al. Comp. Struct. Biotech J. 2021 48



Summary

Xie et al. Comp. Struct. Biotech J. 2021 49



More recent methods/approaches?
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CellTypist

Domínguez Conde et al., Science 376, eabl5197 2022

• 20 different tissues 
from 19 datasets 

• Immune cells across 
different organs

• Logistic regression with 
stochastic gradient 
descent learning

51



CellTypist
Benchmarking with other label-transferring methods

Domínguez Conde et al., Science 376, eabl5197 2022 52



Generative learning is the next big thing? scGPT

53Cue H., et al., Nature Methods, 2024



Generative learning is the next big thing? scANVI
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GPTCelltype
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Challenges of automated cell type annotation?

• There is no ground truth for cell type annotation within a 
specific dataset

• Biology is complex, and cell states vary continuously

• Delineations between cell types are imprecise

• Cancer cell annotation is even more challenging due to their 
heterogeneity

➢ It is crucial that annotation methods highlight areas of 
uncertainty that may require manual scrutiny

➢ Any solution?    

56



popular Vote (popV)
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Malignant Cell (MACE) annotation

• CNV-based methods: SCEVAN

• Reference-based method: scATOMIC

Abdelaal T., et al. BioRxiv, 2025 58



Malignant Cell (MACE) annotation

59Abdelaal T., et al. BioRxiv, 2025

Peng_et_al_PDAC

Qian_et_al_Breast



Summary

• Cell identification is moving from unsupervised (clustering/visualization) to 

supervised (classification) learning

• Check what reference you are using!

– The more similar the reference is to your data - the better the prediction. 

– Same technology matters

– Do you trust their celltype annotations?

• Atlases do not contain all tissues/celltype and especially not all disease states of 

cells.

• Also, look at DGE and known markers and check that predictions make sense

• Consensus annotation methods combine the power of other automated methods 

and can be beneficial when addressing new, unknown cell types or disease samples.

60
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Some useful resources

• Azimuth - Seurat label transfer to reference sets

– https://azimuth.hubmapconsortium.org/

– online or R package

• DISCO - CellMapper to several tissues (correlation-based)

– https://www.immunesinglecell.org/

• Celltypist - Regularised linear models with Stochastic 
Gradient Descent

– https://www.celltypist.org/

– online or python package

• scATOMIC (Random Forest) Pan-cancer TME cell type 
classifier

– https://github.com/abelson-lab/scATOMIC
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